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Probability distribution of the order parameter for the three-dimensional Ising-model
universality class: A high-precision Monte Carlo study
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We study the probability distributionP(M ) of the order parameter~average magnetization! M, for the
finite-size systems at the critical point. The systems under consideration are the 3-dimensional Ising model on
a simple cubic lattice, and its 3-state generalization known to have remarkably small corrections to scaling.
Both models are studied in a cubic box with periodic boundary conditions. The model with reduced corrections
to scaling makes it possible to determineP(M ) with unprecedented precision. We also obtain a simple, but
remarkably accurate, approximate formula describing the universal shape ofP(M ).

PACS number~s!: 05.50.1q, 64.60.Cn, 05.10.Ln, 75.40.Mg
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This work is devoted to a study of the following problem
Consider a finite system belonging to the universality cl
of a three-dimensional~3D! Ising model, exactly at its criti-
cal point. Let the system have a nonconserved order par
eter, cubic symmetry, and periodic boundary conditions.
such a finite-size system the order parameterM ~for the Ising
model, the sum of all spins, divided by the total number
spins in the system! will be a fluctuating quantity, character
ized by the probability distributionP(M ) @1,2#. In the scal-
ing limit ~system size going to infinity! this function is uni-
versal~up to rescaling ofM ), and can thus be considered
very interesting and informative characteristic of the giv
universality class.@One should bear in mind thatP(M ) de-
pends on the geometry of the box, and on the boundary c
ditions; in this study we always consider a cubic box w
periodic boundary conditions.# For example,P(M ) contains
the information aboutall momentâ Mk& of M, including the
universal ratios such as the Binder cumulantU512(1/
3)^M4&/^M2&2, which has been a subject of many Mon
Carlo studies@1,3–10#. Moreover, a precise knowledge o
P(M ) proved to be important for locating and characterizi
the critical point in Monte Carlo studies of various system
including the liquid-gas critical point@11#, the critical point
in the unified theory of weak and electromagnetic inter
tions@12#, and the critical point in quantum chromodynami
@13#.

The first Monte Carlo computation ofP(M ) for the 3D
Ising model in a cubic box with periodic boundary cond
tions was performed in Ref.@1#, where its double-peak shap
was established. A more accurate determination ofP(M )
was done in Ref.@14#, also by Monte Carlo computation
Results reported for the 3D case in Ref.@15# appear to be
incorrect. Despite considerable progress in computation
P(M ) by analytical methods@16–20#, numerical simulation
remains the main source of information about its propert

Our aim was to computeP(M ) on a qualitatively new
level of accuracy, in comparison to what has been done
fore @14#, and to put the result into form convenient for fu
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ther use. We would like to emphasize the following tw
features of our computation that made this possible.

~1! The computation of Ref.@14# used the 3D Ising mode
on a simple cubic lattice of sizes 203 and 303. As we will
see, the shape ofP(M ) obtained with these relatively sma
lattice sizes still differs noticeably from its scaling limit, du
to non-negligible corrections to scaling. To overcome t
difficulty, we employed, in addition to the 3D Ising model,
more sophisticated model in the same universality cla
which was shown to have remarkably small corrections
scaling @8#. This made it possible to determine the scali
limit of P(M ) with an accuracy far exceeding what would b
achievable when one is restricted to the standard 3D Is
model.

~2! The existing results forP(M ) were presented in the
form of Monte Carlo–generated histograms@1,14#. We
present a simple three-parameter formula which is suita
for quantitative applications. Its accuracy is about 231023

of the maximum value ofP(M ).
We have performed Monte Carlo simulations of two mo

els. The first one is the standard 3D Ising model on
simple cubic lattice, defined by the partition function

Z5(
$si %

expH b(̂
i j &

sisj J , si561. ~1!

Here^ i j & denotes pairs of nearest neighbors, and the sum
over the 2N possible configurations, whereN is the total
number of spins. We simulate this model at the critical po
which we take to be atbc50.221 654, using the Swendse
Wang cluster algorithm@21#, and lattice sizes ranging from
123 to 583 ~with periodic boundary conditions!.

The second model~with dramatically reduced correction
to scaling, as was shown in Ref.@8#! is the spin-1 Blume-
Capel model@22,23#. Here the spins can take three discre
values:21, 0, and11. The model is defined by the part
tion function
73 ©2000 The American Physical Society
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FIG. 1. Probability distributionP(M ) of the spin-1 model with reduced corrections to scaling defined by Eq.~2!, and its description by
approximations given in Eqs.~4! ~left! and~3! ~right!. Top: P(M ) obtained by Monte Carlo simulation at the critical point~diamonds!: 203

lattice,b50.393 422, 363106 configurations, one Metropolis sweep1five Wolff steps per configuration. The solid line is the best fit w
Eq. ~4! ~top left! and with Eq.~3! ~top right!. Bottom: the difference between the Monte Carlo data and the fit, corresponding to th
above it.

TABLE I. The parametersa, c andM0 of the probability distributionP(M ), approximated by Eq.~3!,
obtained by the Monte Carlo simulation of the spin-1 model defined by Eq.~2! at the critical point (b
50.393 422). M5W means that a new configuration is produced by one Metropolis sweep followed by five
Wolff steps ~see Ref.@8# for details!. The last three columns are the scale-invariant~but nonuniversal!
quantity M0Ld2yh, whereyh52.4815(15)@8,9#; x2, characterizing the quality of fitting the Monte Carlo-
generated histogram forP(M ) by ansatz~3!, and the number of bins in this histogram.

Lattice Method Configs. a c M0 M0L0.5185 x2 Nbins

123 M5W 107 0.1648~15! 0.7712~19! 0.30243~16! 1.0969~6! 208 116
143 M5W 3.63107 0.1624~9! 0.7714~9! 0.27915~9! 1.0967~4! 267 129
163 M5W 107 0.1576~18! 0.7746~14! 0.26035~11! 1.0962~5! 175 121
183 M5W 107 0.1585~18! 0.7749~20! 0.24500~14! 1.0965~6! 156 125
203 M5W 93106 0.1568~17! 0.7782~25! 0.23194~15! 1.0964~7! 128 127
203 M5W 3.63107 0.1578~8! 0.7762~12! 0.23194~7! 1.0964~3! 218 129
223 M5W 107 0.1618~16! 0.7739~21! 0.22108~11! 1.0980~6! 181 125
263 M5W 107 0.1570~26! 0.7761~27! 0.20243~14! 1.0963~8! 164 125
323 M5W 107 0.1553~19! 0.7776~24! 0.18180~11! 1.0965~7! 166 127
383 M10W 107 0.1575~16! 0.7732~25! 0.16633~10! 1.0967~7! 151 128
463 M10W 23106 0.158~5! 0.781~6! 0.1506~2! 1.0964~14! 136 123
583 M10W 7.23105 0.143~7! 0.776~8! 0.1331~3! 1.0927~25! 135 119
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TABLE II. Analogous to Table I, but for the Monte Carlo simulation of the simple cubic Ising mode~1!
at the critical point (b50.221 654). SW stands for the Swendsen-Wang cluster algorithm@21#.

Lattice Method Configs. a c M0 M0L0.5185 x2 Nbins

123 SW 7.23105 0.268~13! 0.859~8! 0.3892~11! 1.412~4! 129 105
163 SW 7.23105 0.237~6! 0.845~11! 0.3360~6! 1.415~3! 81.5 75
203 SW 7.23105 0.209~9! 0.839~11! 0.2984~9! 1.411~4! 142 119
323 SW 7.23105 0.200~9! 0.807~9! 0.2344~5! 1.414~3! 138 117
583 SW 7.23105 0.196~14! 0.807~11! 0.1733~7! 1.423~6! 121 119
-

al

d
o

d

lgo

th

ris

ur

-
en

d
o

x

or

t

ffi-

ram-

tice
rec-
s

Z5(
$si %

expH b(̂
i j &

sisj2D(
m

sm
2 J , si521,0,11. ~2!

The sum thus includes 3N possible configurations. The pa
rameterD is fixed to the special valueD5 ln 2 ~as explained
in Ref. @8#!, and we perform the simulations at the critic
point, which is taken to bebc50.393 422@8#, using lattice
sizes from 123 to 583. The simulations used a hybri
method, which alternates one Metropolis sweep with five
ten Wolff @24# steps, depending on the system size, as
scribed in Ref.@8#.

The probability distributionP(M ) is obtained as follows.
For each configuration generated by the Monte Carlo a
rithm, we determine the order parameterM51/N( i 51

N si ,
and increment the population of the corresponding bin of
histogram by 1.

We have found that the following ansatz gives a surp
ingly good approximation toP(M ):

P~M !}expH 2S M2

M0
2 21D 2S a

M2

M0
2 1cD J . ~3!

At the same time, the simpler ansatz

P~M !}expH 2cS M2

M0
2 21D 2J ~4!

is clearly insufficient. This is illustrated in Fig. 1, using o
highest-statistics data set for the 203 lattice. One observes
that the accuracy of approximation~3! is approximately 20
times higher than that of Eq.~4!, and the residual discrep
ancy of Eq.~3! is comparable to the statistical noise, ev
with the high statistics used.

Ansatz ~3! was motivated by the observation thatM6

plays an important role in the effective potential of the mo
els in the 3D Ising universality class, while higher powers
the order parameter can usually be neglected@25–27#. That
is, the effective potential can in many cases well be appro
mated by a polynomial consisting ofM2, M4, andM6 terms.
This is exactly what appears in the exponent in Eq.~3!.

The approximate nature of ansatz~3! manifests itself by
its failure to correctly reproduce the large-M behavior of the
tails of P(M ), which is governed by the critical indexd:

P~M !}M (d21)/2exp$2constM d11% ~5!

~see Ref.@28#; for the discussion of the preexponential fact
in a more general setting, see Ref.@26#!. However, due to the
fact that for the 3D Ising universality class the exponend
r
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11'5.8 is close to 6, this does not prevent ansatz~3! from
accurately describing the main part ofP(M ) ~excluding
extremely-far-tail region!.

The polynomial in the exponent of Eq.~3! has three pa-
rameters. Instead of simply parametrizing it by the coe
cients in front of M2, M4 and M6, we have chosen the
parametrization so as to separate the scale-invariant pa
eters (a andc) and the scale-dependent parameterM0

FIG. 2. Dependence of the scale-invariant parametersa ~upper
plot! and c ~lower plot! of the probability distributionP(M ), ap-
proximated by Eq.~3!, on the lattice sizeL. The data for the spin-1
model ~diamonds! and for the simple cubic Ising model~triangles!
are taken from Tables I and II, respectively. The power of the lat
size in the horizontal axis is chosen to linearize the leading cor
tions to scaling, which behave asL2v, where various estimate
give v50.8060.04 ~see, e.g., Refs.@29# and @30#!.
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~which parametrizes the position of the peak of the or
parameter!. The values ofa and c in the scaling limit are
universal and determine the ‘‘universal shape’’ ofP(M ).

The results of our Monte Carlo simulations are collec
in Tables I and II, and shown in Figs. 1 and 2. For the spi
model, no deviations from scaling are observed on latti
163 and larger, while the simple cubic Ising model demo
strates pronounced corrections to scaling, which are, eve
our largest lattices, much higher than both statistical error
our spin-1 simulations and the accuracy of approximat
~3!. Corrections to scaling make it difficult to extract acc
rate scaling limit values ofa and c from the simple cubic
Ising model data, even if statistical errors are reduced b
higher-statistics simulation, due to necessity to extrapolat
L→`.

There is no such problem with the spin-1 model, and
obtain the universal parameters of Eq.~3!:

a50.158~2!, c50.776~2!. ~6!

Here the errors take into account both statistical uncertain
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and the systematic deviations inherent in approximation~3!.
The latter are estimated from the lower right plot in Fig.

From Eqs.~3! and ~6! one can easily obtain any require
property ofP(M ). For example, one immediately learns th
the ratio of the peak value ofP(M ) to its value atM50 is

ec52.173~4!. ~7!

Summarizing, we have computed, with a higher accur
than previously available, the scaling limit form of the pro
ability distribution P(M ) of the order parameterM of sys-
tems with 3D Ising universality, in a cubic box with period
boundary conditions. A convenient description ofP(M ) is
given by Eqs.~3! and ~6!, which deviates from the actua
P(M ) by no more than 231023 times its maximum value
~Fig. 1, right!.
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