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Probability distribution of the order parameter for the three-dimensional Ising-model
universality class: A high-precision Monte Carlo study
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We study the probability distributio(M) of the order parametefaverage magnetizatiprM, for the
finite-size systems at the critical point. The systems under consideration are the 3-dimensional Ising model on
a simple cubic lattice, and its 3-state generalization known to have remarkably small corrections to scaling.
Both models are studied in a cubic box with periodic boundary conditions. The model with reduced corrections
to scaling makes it possible to determiRéM) with unprecedented precision. We also obtain a simple, but
remarkably accurate, approximate formula describing the universal shap@vof.

PACS numbsgs): 05.50-+q, 64.60.Cn, 05.10.Ln, 75.40.Mg

This work is devoted to a study of the following problem. ther use. We would like to emphasize the following two
Consider a finite system belonging to the universality clas$eatures of our computation that made this possible.
of a three-dimensiondBD) Ising model, exactly at its criti- (1) The computation of Ref14] used the 3D Ising model
cal point. Let the system have a nonconserved order paran®n a simple cubic lattice of sizes 2@nd 36. As we will
eter, cubic symmetry, and periodic boundary conditions. Fofee, the shape ¢#(M) obtained with these relatively small
such a finite-size system the order parambtdfor the Ising  lattice sizes still differs noticeably from its scaling limit, due
model, the sum of all spins, divided by the total number oft® non-negligible corrections to scaling. To overcome this
spins in the systewill be a fluctuating quantity, character- difficulty, we employed, in addition to the 3D Ising model, a

ized by the probability distributio(M) [1,2]. In the scal- more sophisticated model in the same universality class,
ing limit (system size going to infinijythis function is uni- which was shown to have remarkably small corrections to

versal(up to rescaling oM), and can thus be considered as_ca_lling [8]. This_ made it possible to detgrmine the scaling
very interesting and informative characteristic of the givenIImIt of P(M) with an accuracy far exceeding what would be

universality class[One should bear in mind th&(M) de achievable when one is restricted to the standard 3D Ising
" model.
pends on the geometry of the box, and on the boundary con- (2) The existing results foP(M) were presented in the

ditions; in this study we always consider a cubic box Withform of Monte Carlo—generated histogranis,14]. We
periodic boundary conditionsFor ex?mpleP(M) contains  rasent a simple three-parameter formula which is suitable
the information abouall momentaM*) of M, including the ¢, quantitative applications. Its accuracy is about 203
universal ratios such as the Binder cumulaht=1—(1/  5f the maximum value oP(M).

3)(M*)/(M?)?, which has been a subject of many Monte e have performed Monte Carlo simulations of two mod-
Carlo studieg1,3-10. Moreover, a precise knowledge of els. The first one is the standard 3D Ising model on the
P(M) proved to be important for locating and characterizingsimple cubic lattice, defined by the partition function

the critical point in Monte Carlo studies of various systems,

including the liquid-gas critical poirtl1], the critical point

in the unified theory of weak and electromagnetic interac- _ _
tions[12], and the critical point in quantum chromodynamics Z= {% exp[ B(IE]_) Sisj] o s==L @
[13].

The first Monte Carlo computation d#(M) for the 3D
Ising model in a cubic box with periodic boundary condi- Here(ij) denotes pairs of nearest neighbors, and the sum is
tions was performed in Ref1], where its double-peak shape over the 2 possible configurations, whend is the total
was established. A more accurate determinatiorP () number of spins. We simulate this model at the critical point,
was done in Ref[14], also by Monte Carlo computation. which we take to be gB.=0.221 654, using the Swendsen-
Results reported for the 3D case in REE5] appear to be Wang cluster algorithmi21], and lattice sizes ranging from
incorrect. Despite considerable progress in computation 0f2® to 58 (with periodic boundary conditions
P(M) by analytical method§16—20, numerical simulation The second modéivith dramatically reduced corrections
remains the main source of information about its propertiesto scaling, as was shown in R¢B]) is the spin-1 Blume-
Our aim was to comput®(M) on a qualitatively new Capel mode[22,23. Here the spins can take three discrete
level of accuracy, in comparison to what has been done besalues:—1, 0, and+1. The model is defined by the parti-
fore [14], and to put the result into form convenient for fur- tion function
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FIG. 1. Probability distributioP?(M) of the spin-1 model with reduced corrections to scaling defined byZgand its description by
approximations given in Eq$4) (left) and(3) (right). Top: P(M) obtained by Monte Carlo simulation at the critical pojdiamonds: 20°
lattice, B=0.393 422, 3& 10° configurations, one Metropolis sweefive Wolff steps per configuration. The solid line is the best fit with
Eq. (4) (top left) and with Eq.(3) (top right. Bottom: the difference between the Monte Carlo data and the fit, corresponding to the plot
above it.

TABLE |. The parameters, ¢ and M, of the probability distributiorP(M), approximated by Eq.3),
obtained by the Monte Carlo simulation of the spin-1 model defined by(Bgat the critical point 8
=0.393422). M5W means that a new configuration is produced by one Metropolis sweep followed by five
Wolff steps (see Ref.[8] for detailg. The last three columns are the scale-invaridnit nonuniversal
quantity MoL9™ Y, wherey,=2.4815(15)[8,9]; x?, characterizing the quality of fitting the Monte Carlo-
generated histogram fd&?(M) by ansatz3), and the number of bins in this histogram.

Lattice Method  Configs. a c Mg MoLO5%85 42 Niins
12 M5W 10 0.164815 0.771219 0.3024316) 1.09696) 208 116
143 M5W 3.6x10° 0.16249) 0.77149)  0.2791%9) 1.09674) 267 129
16° M5W 10 0.157618) 0.774614) 0.2603%11) 1.09625) 175 121
18 M5W 10 0.158%18) 0.774920) 0.2450014) 1.09656) 156 125

20° M5W 9x10° 0.156817) 0.778225) 0.2319415 1.09647) 128 127
20° M5W 3.6x10° 0.15788) 0.776212) 0.231947) 1.09643) 218 129

22 M5W 10’ 0.161816) 0.773921) 0.2210811) 1.098@6) 181 125
26° M5W 10’ 0.157@26) 0.776127) 0.2024314) 1.09638) 164 125
328 M5W 10’ 0.155319) 0.7776€24) 0.1818Q11) 1.096%7) 166 127
38 M10w 10 0.157%16) 0.773225 0.1663310) 1.09677) 151 128

46° M1o0w 2x10%°  0.1585) 0.7816) 0.15062) 1.096414) 136 123
58 M1io0w 7.2x10°  0.1437) 0.7768) 0.13313) 1.092725 135 119
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TABLE II. Analogous to Table I, but for the Monte Carlo simulation of the simple cubic Ising mddel
at the critical point =0.221 654). SW stands for the Swendsen-Wang cluster algofiin

Lattice  Method  Configs. a c M, MoL%5%85 %2 Npins
12 SW 7.2<10° 0.26813  0.8598)  0.389211)  1.4124) 129 105
16° SW 7.2x10°  0.2376) 0.84511)  0.336(6) 1.4153) 815 75
20° SwW 7.2<10°  0.2099) 0.83911)  0.29849) 1.4114) 142 119
328 SW 7.2<10°  0.20Q9) 0.8079) 0.23445) 1.4143) 138 117
58° SW 7.2<10° 0.19614) 0.80711) 0.17337) 1.4236) 121 119

5 +1~5.8 is close to 6, this does not prevent ang&jzfrom
Z=§} ex B(iE) SiSj_D% Smi» Si=—10+1. (2)  accurately describing the main part (M) (excluding
! ! extremely-far-tail region

The sum thus includes™3possible configurations. The pa- The polynomial in the exponent of E(B) has three pa-

rameterD is fixed to the special valub =In 2 (as explained rgmete_r S. Instead 0; sim4p|y paragnetrizing it by the coeffi-
in Ref. [8]), and we perform the simulations at the critical C€NtS In front of M7, M* and M”, we have chosen the
point, which is taken to b@,=0.393 422[8], using lattice parametrization so as to separate the scale-invariant param-
sizes from 13 to 58. The simulations used a hybrid €S @ andc) and the scale-dependent paramedey

method, which alternates one Metropolis sweep with five or

ten Wolff [24] steps, depending on the system size, as de- g3

scribed in Ref][8]. a
The probability distributior?(M) is obtained as follows. 0281 Si‘“*"e?“bli“i“gl -
For each configuration generated by the Monte Carlo algo- o.2s e }
rithm, we determine the order parametédr=1NZ! s, 02 |
and increment the population of the corresponding bin of the f
histogram by 1. 022 |
We have found that the following ansatz gives a surpris- | } { {
ingly good approximation té&(M):
0.18
4 ( M 2 2 M2 } 016 | 1 - - ® g
P(M)xexp —| ——1 —+cC|i. (3 : O S * '
M2 Mad 0.14 f {
At the same time, the simpler ansatz 0'120 0.2)2 0.54 0.;)6 0.‘08 oj1 0.112 o.l14
M2 2 L-0.8
P(M)ocexW'—c(—z—1> } (4)

MO 0.88 T T T T T T T
is clearly insufficient. This is illustrated in Fig. 1, using our — ogs | simple cubic Ising —a— {
highest-statistics data set for the32@ttice. One observes spin-1 model +—e—
that the accuracy of approximatidB) is approximately 20 084 | } l
times higher than that of Ed4), and the residual discrep-

ancy of Eq.(3) is comparable to the statistical noise, even g |
with the high statistics used.

Ansatz (3) was motivated by the observation thit® o8 {
plays an important role in the effective potential of the mod-

els in the 3D Ising universality class, while higher powers of 44| I } s . .

the order parameter can usually be negle¢25-27. That [t tryrEy, 3

is, the effective potential can in many cases well be approxi- oz L

mated by a polynomial consisting bf2, M*, andM® terms. . . . . . . .

This is exactly what appears in the exponent in 8j. 0 00z 004 006 008 01 012 014

The approximate nature of ansd® manifests itself by L
its failure to correctly reproduce the lardg@-behavior of the FIG. 2. Dependence of the scale-invariant parametespper
tails of P(M), which is governed by the critical index plot) and ¢ (lower plot of the probability distributionP(M), ap-
proximated by Eq(3), on the lattice siz&.. The data for the spin-1

P(M)axM©~D2exp{ —constM °* 1} (5 model(diamonds and for the simple cubic Ising modéfiangles

are taken from Tables | and Il, respectively. The power of the lattice
(see Ref[28]; for the discussion of the preexponential factor sjze in the horizontal axis is chosen to linearize the leading correc-
in a more general setting, see RX6]). However, due to the tions to scaling, which behave ds ©, where various estimates
fact that for the 3D Ising universality class the exponént give w=0.80+0.04 (see, e.g., Ref§29] and[30]).
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(which parametrizes the position of the peak of the ordeand the systematic deviations inherent in approximat&n
parameter The values ofa and c in the scaling limit are  The latter are estimated from the lower right plot in Fig. 1.
universal and determine the “universal shape”R{fM). From Egs.(3) and(6) one can easily obtain any required
The results of our Monte Carlo simulations are collectedproperty ofP(M). For example, one immediately learns that
in Tables | and Il, and shown in Figs. 1 and 2. For the spin-1lthe ratio of the peak value ¢#(M) to its value atM =0 is
model, no deviations from scaling are observed on lattices
16° and larger, while the simple cubic Ising model demon- e°=2.1734). @)
strates pronounced corrections to scaling, which are, even on
our largest lattices, much higher than both statistical errors of
our spin-1 simulations and the accuracy of approximationSUmmarizing, we have computed, with a higher accuracy
(3). Corrections to scaling make it difficult to extract accu- than previously available, the scaling limit form of the prob-
rate scaling limit values oé and c from the simple cubic @bility distribution P(M) of the order parameteM of sys-
Ising model data, even if statistical errors are reduced by &#&ms with 3D Ising universality, in a cubic box with periodic
higher-statistics simulation, due to necessity to extrapolate tgoundary conditions. A convenient description RfM) is

L oo, given by Egs.(3) and (6), which deviates from the actual
There is no such problem with the spin-1 model, and weP(M) by no more than 210™° times its maximum value
obtain the universal parameters of E8): (Fig. 1, right.
a=0.1582), c=0.7762). (6) We thank INTAS (Grant No. CT93-0028and DRSTP

(Dutch Research School for Theoretical Physiésr en-
Here the errors take into account both statistical uncertaintieabling one of ugM.T.) to visit Delft University.
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